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Abstract--Dynamic simulation of  pressure-driven flow of  a non-neutrally buoyant suspension has been 
performed by Stokesian Dynamics. Channel flow at zero Reynolds number of  a monodisperse 
non-Brownian suspension of  spheres in a monolayer was studied for a range of  three parameters: bulk 
particle area fraction 4~ b, dimensionless gravitational parameter B = (U°/<u>)(H/a) 2, and dimensionless 
channel width H/a. Here, U ° is the Stokes settling velocity of  an isolated sphere, <u> is the mean velocity 
of  the suspension, H is the channel width, and a is the particle radius. From an initially uniform 
distribution, a range of  behavior in the fully-developed flow is observed depending upon the value of  B. 
For small B, shear-induced migration dominates buoyancy effects, and a layer at large ~bA is formed in 
the center of  the channel. For sufficiently strong gravitation, particles settle rapidly to form a concentrated 
layer that is transported along the bottom of  the channel by shearing. At intermediate values of B, 
shear-induced migration of  particles to the center of  the channel occurs simultaneously with gravitational 
settling. In the lower portion of the channel, these fluxes are opposed and lead to nonmonotonic variation 
of  particle fraction, with ~bA increasing away from the lower wall to a maximum near or even above the 
centerline and then rapidly decreasing, typically vanishing to leave clear fluid adjacent to the upper wall. 
These results are in qualitative agreement with the small amount of experimental data in the literature 
on such systems. The flow has been modeled using macroscopic balance equations presented previously; 
the predictions agree well with simulations. © 1997 Elsevier Science Ltd 
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1. I N T R O D U C T I O N  

Suspensions exhibit a variety of rheological responses. The dependence of the viscosity upon the 
particle volume fraction ~b is strong, and even suspensions with weak interparticle forces and weak 
Brownian motion exhibit non-Newtonian behavior, including normal stress differences 
(Gadala-Maria 1979, Brady & Morris 1997) and time-dependent rheology (Gadala-Maria & 
Acrivos 1980). These rheological phenomena in uniformly concentrated and homogeneously 
sheared suspensions are compounded in inhomogeneously sheared suspensions by shear-induced 
particle migration (Leighton & Acrivos 1987b). This irreversible migration of noncolloidal particles 
can result in very nonuniform concentration fields, and the pervasiveness of flows with varying 
shear rate--that is flows in which the shear rate or stress vary with position as in pipe flow for 
example--makes understanding particle migration important for process design. If particles and 
fluid are not of the same density, settling (or rising) occurs simultaneously with shear-induced 
migration, and the bulk flow also depends upon the relative strength of buoyancy and shearing 
forces. 

This work investigates the influence of particle buoyancy in inhomogeneous suspension flow. 
Inhomogeneous here means the shear rate is nonconstant, whereas we reserve the term nonuniform 
for variation in particle fraction. We have studied pressure-driven flow of a suspension of heavy 
particles in a channel (there is no loss of generality in assuming the particles more dense than the 
fluid). The flow was simulated by Stokesian Dynamics over a range of the relevant dimensionless 
parameters, which are the bulk particle area fraction ~b b (area rather than volume fraction because 
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we simulate flow in a monolayer), the ratio of channel width to particle size H / a ,  and 
B = ( U ° / ( u ) ) ( H / a )  2, where U ° is the Stokes settling velocity of an isolated particle and (u )  is the 
average velocity of the suspension; B characterizes the relative strength of buoyancy to viscous 
shearing. We have also extended the application of the suspension-flow model presented by Nott 
and Brady (1994), hereafter referred to as NB, to non-neutrally-buoyant particle flows. The model 
equations were solved to predict the fully-developed flow over a range of parameters. The 
agreement between the simulation results and model predictions is good over a wide range of B. 

There is little experimental work that is directly comparable with our simulations of channel flow. 
While there is no replacement for physical experiments, confidence that the simulation results 
represent realistic behavior is well-founded: Stokesian Dynamics simulations of Phung et al. (1996) 
and Phung (1993) yield excellent agreement with the suspension viscosity determined 
experimentally by van der Werff and de Kruif (1989) and with the particle microstructure 
determined in experiments by Parsi and Gadala-Maria (1987). For pressure-driven flow, there is 
good agreement between the simulations of NB and the experiments of Koh et al. (1994). 

An interesting density stratification in which relatively heavy material flows stably above lighter 
results from competition between buoyancy forces and shear-induced migration. This was observed 
by Altobelli et al. (1991), who performed nuclear magnetic resonance (NMR) imaging of the 
velocity and particle fraction in pressure-driven tube flow (note their figure 6). Shear-induced 
migration gives rise to a maximum in ~ near the center of the tube, similar to the findings of Koh 
et al. (1994). The results of Altobelli et al. are particularly interesting, however, because the particle 
density exceeds the fluid density, and thus the suspension of large ~ near the center of the tube 
is denser than the more dilute suspension below. Zhang and Acrivos (1994) have modeled the flow 
in the experiments of AltobeUi et al., showing that the volume-fraction profiles can be explained 
by a balance of shear-induced migration and gravitational settling; their model also predicts a 
nonaxial mean secondary flow. Our simulations demonstrate that a similar density stratification 
occurs in two-dimensional channel flow over a range of ~b~ and B. 

Indeed, a density stratification with heavy material over light is to be expected in pressure-driven 
flow. In a neutrally-buoyant suspension, particles migrate to the center of the channel where the 
shear rate is small. Thus, if the mass density of the particles increases by a small amount, the 
concentration profile will be slightly perturbed and the concentrated suspension at the center of 
the channel will be denser than the dilute material below. Were this not the case, the condition 
of neutral buoyancy would be unstable and probably unobservable. 

Pressure-driven flow with heavy particles involves the phenomenon of viscous resuspension. In 
resuspension, a settled layer of heavy particles expands in height and flows due to shear in the fluid 
above. Resuspensions at large Reynolds numbers, such as those involved in transport of sand and 
silt in surf zones, are well-known. In contrast to these inertially-dominated phenomena, viscous 
resuspension occurs at small Reynolds number where inertia has negligible influence. Leighton and 
Acrivos (1986) showed that the steady-state height of a viscously-suspended layer could be 
estimated from a balance between gravitational settling and Fickian diffusion of particles. The 
particles were assumed to be too large for Brownian diffusion to play a significant role; hence, the 
diffusivity in this model is the shear-induced diffusivity driven by hydrodynamic interactions. This 
gradient- or collective-diffusivity is to be distinguished from the closely related shear-induced 
self-diffusivity first recognized and studied by Eckstein et al. (1977). 

Leighton and Acrivos (1987a, b) improved upon the experimental technique of Eckstein et al. 

(1977), and made the important step of relating the cross-stream migration of particle to fluxes 
caused by gradients in both shear rate 7 and concentration ~b. This "diffusive flux" phenomenology 
has been used in a number of suspension-flow models. Schaflinger et al. (1990) applied it in 
modeling a suspension of dense particles in shear and pressure-driven channel flow, but included 
only the particle flux due to V~b. For pressure-driven channel flow of heavy particles, the model 
predicts that all particles lie below the velocity maximum. This prediction, which is contradicted 
by the simulation results of the present study, is readily understood because the cross-stream flux 
at the maximum in axial velocity (i.e. where ~, = 0) is solely due to gravitational settling, and the 
particles must lie below the velocity maximum. Phillips et al. (1992) included the particle flux due 
to both V7 and V~b, successfully predicting rates of variation and steady-state values for 0 in 
inhomogeneous shear flows of neutrally-buoyant suspensions. However, there was again 
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discrepancy from experimental results for pressure-driven flow, as the model predicted, for all bulk 
particle fractions, that ~b would take on the maximum value ~b = ~bm at the location where the 
velocity gradient vanishes. Zhang and Acrivos (1994) applied the diffusive-flux model with 
migration due to both V~b and V? to predict pressure-driven tube flow of a suspension of heavy 
particles, and their predictions are in good agreement with the experiments of Altobelli et al. (1991). 

The suspension-balance model of NB is used in the present study. The suspension-balance 
approach differs from the diffusive-flux approach in two notable and closely related ways. The first 
is in the rheological model for the suspension and the second is in the manner in which particle 
migration is incorporated. The diffusive flux model employs a Newtonian rheology with a 
qS-dependent shear viscosity and postulates a form for the cross-stream flux. The 
suspension-balance model employs a non-Newtonian bulk stress with shear-induced normal 
stresses and relates the cross-stream flux of particles to the variation of the normal stresses. In this 
and prior applications of the suspension-balance model, only the isotropic normal stress, or particle 
pressure H (Jeffrey et al. 1993) was used, because normal stress differences are not relevant to the 
rectilinear flows considered. However, NB did note that normal stress differences should be 
included in the general case, and their origin and importance have been demonstrated by Brady 
and Morris (1997). 

The prediction by the diffusive-flux model of a particle fraction maximum of ~b = ~b m at the 
centerline in pressure-driven flow prompted NB to model the particle pressure 11 nonlocally. Rather 
than a pressure proportional to 7 as dimensional considerations suggest, NB, following arguments 
presented by Jenkins and McTrigue (1990) for the influence of fluctuational motion in suspensions, 
modeled I-I proportional to x/T,  where T = (u' .u')p (defined pointwise) is the mean square of the 
scalar particle velocity fluctuationst. A balance equation for T including diffusive transport of 
fluctuational "energy" was postulated using heuristic arguments based urpon the equation for the 
rate of dissipation of energy in the suspension. Expressing H ~: x / T  is a simple means of 
constructing a nonlocal model for the suspension stress. The model asserts that T is generated at 
points where ~, is large and is transported diffusively if not spatially constant, and the constitutive 
relation of FI to x//-T renders the stress nonlocal in ~. An alternative nonlocal approach to modeling 
the bulk shear stress in pressure-driven flow has been proposed by Mills and Snabre (1996) and 
used with good success in predicting the pressure driven channel flows of Koh et al. (1994). 

We have simulated the pressure-driven flow of a suspension over a range of B to assess the 
dependence of the flow behavior upon the relative strength of settling to migration. A wide range 
of behavior is observed, from the neutrally-buoyant suspension ( B =  0), in which a 
highly-concentrated layer of particles forms at the center of the channel, to the formation of a 
settled layer of particles which are transported along the bottom of the channel by shear for 
sufficiently large B. At small and intermediate B, a stable flow of heavy material over light occurs. 
The bulk flow depends strongly upon q~b: for small ~bbA at a fixed B, buoyancy is more important 
relative to shear-induced migration than at larger concentrations. Fixing B and ~b~ effectively yields 
dynamic similarity, and the residual influence of H / a  is weak, with the primary effect being that 
T is larger in the center of the channel for narrower channels. All of the simulations reported 
employed a short-ranged repulsive interparticle force. These forces apparently have an important 
influence upon the bulk flow behavior, as shown by Brady and Morris (1997) and discussed in 
section 2.2. 

In this work, we have not studied highly-concentrated suspensions The equivalent volume 
fractions of the monolayer simulations reported are roughly 0.27 ~< ~b ~< 0.4. Our interest in this 
work was to understand the migration phenomenon in situations where particle buoyancy is 
relevant and to determine the validity of the suspension-balance flow model in these situations. In 
a suspension where ~b is close to the maximum packing value ~bm, little migration will be observed, 
as any migration forces some region of the flow to reach ~b = ~bm. Hence, for purposes of a study 
of migration, the moderately concentrated suspensions are of greater interest, as variation of the 
particle fraction across the flow can be on the order of 100% rather than only a few per cent. 

We begin in section 2 by discussing the development length of the flow, the buoyancy parameter, 

tThere is no potential for confusion of the meaning of the symbol T here, as the particles are assumed non-Brownian and 
the thermodynamic temperature is never considered. 
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and the influence of interparticle forces. In section 3, application of Stokesian Dynamics to this 
flow is discussed and the simulation results are presented. Predictions of the flow by the model are 
compared with simulation results in section 4, followed by a summary and discussion. 

2. SCALING ANALYSIS AND THE ROLE OF INTERPARTICLE FORCES 

2.1. Flow development and the buoyancy parameter 

We consider pressure-driven flow of a non-Brownian suspension of spheres in a Newtonian fluid 
at vanishing Reynolds number. The particles are of equal or greater density than the fluid and 
interact both hydrodynamically and through repulsive interparticle forces, the latter vanishing at 
surface separations much smaller than the particle size. The inhomogeneous shear rate in 
pressure-driven flow causes particle migration to the center of the channel, and heavy particles settle 
due to gravity. For a suspension of initially uniform particle fraction flowing in an arbitrarily long 
channel (the situation in our simulations), there is no variation in the streamwise direction. The 
concentration profile evolves in time in a manner that depends on the relative strength of 
shear-driven to buoyancy-driven fluxes. 

For  a neutrally buoyant noncolloidal suspension, an estimate of the length scale for evolution 
of ~b, obtained by NB using an argument due to Leighton and Acrivos (1987b), shows that 
fully-developed pressure-driven channel flow should be expected after a distance of O[(H/a)2H]. 
The argument is that particles migrate a distance of O(H) by a random-walk process characterized 
by the shear-induced self-diffusivity (Eckstein et al. 1977). This diffusivity scales, on dimensional 
grounds, as 7a2~(qS), where ~ is a dimensionless function of particle concentration. Diffusive 
motion of lengthscale H occurs in a time/-F/(i, a2~, while ~H is a representative velocity scale, and 
the product of these time and velocity scales yields the flow rate-independent (H/a)2H/~ as an 
estimate of the development length. For  q~ > 0.3, ~ ~ 0.1 from the experiments of Leighton and 
Acrivos (1987a) and Stokesian Dynamics simulations of Phung (1993). When particle buoyancy 
is relevant, this estimate serves as an upper limit; development is understandably more rapid for 
very dense particles as settling dominates migration. 

We define a dimensionless parameter B characterizing the relative strength of buoyancy to 
shearing. A shear-driven random walk of O(H) takes a time of O(14~/~a 2) = O(H3/(u>a2), with 
7 = (u) /H,  while Stokes settling velocity yields an estimate of H/U ° for the time to settle a similar 
distance, and the ratio of these two times is 

tlJ 

The Stokes settling velocity is U ~ = 2(p r -pf)ga2/9rl, with g = Lgl the magnitude of the 
gravitational acceleration, so that B may also be written 

%<u) 

where VP is the pressure gradient driving the flow. Note that B is inversely proportional to the 
Shields parameter ~ used by Schaflinger et al. (1990). 

The parameters B, bulk particle fraction q5 b, and dimensionless channel width H/a characterize 
the channel flow of a suspension. A simple rescaling of the particle fraction discussed in section 
4 allows constitutive relations developed for three-dimensional systems to be applied to a 
monolayer. 

2.2. Repulsive &terparticle forces 

Interparticle forces were neglected in the above scaling analysis, although there generally should 
be further dimensionless groups characterizing the strength and range of these forces relative to 
the shear flow and particle size. Throughout  our simulations we maintain the same ratio of shear 
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rate to strength of interparticle force and the same range of interparticle force, so their variation 
is not an issue in the simulations. 

We have found, similar to NB, that repulsive interparticle forces do, however, have important 
consequences for the flow. Short-ranged repulsive forces, i.e. forces vanishing at interparticle 
separations much smaller than the particle radius, which are the type of forces used here, inhibit 
the formation of closely packed particle clusters. This was observed in the simulation of NB and 
also in undisplayed work from this study. Particle clusters can often span a large fraction of the 
channel, and the flow is consequently not representative of a smoothly-sheared suspension. In 
essence, H/I is not large, where l is a measure of the cluster size, and thus "wall" effects dominate 
the suspension motion. In order to obtain a clear picture of the migration phenomenon and 
simulation results that could be compared with a flow model that assumes smooth shearing, 
repulsive interparticle forces were used in all of the simulations reported. 

Recent analysis of the pair distribution function for suspensions of monodisperse spheres in 
strong flow--i.e, flow at large P6clet number Pe where the P6clet number measures the relative 
strength of shearing to Brownian motion--has shown that if a repulsive force or surface roughness 
is present, the rheology of a dilute suspension is non-Newtonian with finite particle pressure and 
normal stress differences in the limit Pe ~ oo (Brady & Morris 1997). Hence, the introduction of 
a repulsive force is sufficient to produce the non-Newtonian behavior assumed in the model detailed 
in section 4. Extensions of these results to concentrated suspensions using arguments for the 
interaction of a close pair in the "mean field" of a concentrated suspension were presented in Brady 
and Morris (1997), and it was shown that the shear and normal stresses in strongly-sheared 
concentrated suspensions are of comparable magnitude and scale in the same manner as maximum 
packing is approached. Large scale particle clustering was not addressed in this study. In 
concentrated colloidal suspensions (~ > 0.5), transient clusters have been shown to be closely 
correlated with shear thickening at large shear rates (Bossis & Brady 1989, D'Haene et al. 1993, 
Bender & Wagner 1996). Thus, if strong particle clustering occurs, the "microscale" length scale 
will increase from the particle size a to the cluster size l, and the macroscopic modeling would need 
to explicitly take into account this new length scale. 

3. SIMULATION 

Stokesian Dynamics simulations of pressure-driven channel flow were performed for a range of 
q~ and B, at two values of H/a. Complete descriptions of Stokesian Dynamics are given elsewhere 
(Brady et al. 1988, Brady & Bossis 1988), while application of the method to pressure-driven flow 
was demonstrated by NB. We present only a brief treatment of the method before turning to the 
simulation results. 

3.1. Simulation method 

The Stokesian Dynamics method for simulation of suspension flow captures both the near-field 
and the many-body nature of hydrodynamic interactions at low Reynolds number. This is possible 
because hydrodynamic interactions may be decomposed into short-ranged lubrication interactions 
and long-ranged mobility interactions. Mobility interactions are computed as an expansion in 
moments about the particle centers of the hydrodynamic force density exerted on the particle 
surfaces. In application, the expansion is truncated after the first moment, where the zeroth moment 
is the net force on a particle, and the first moment consists of the antisymmetric torque and the 
symmetric stresslet. Fax6n's laws (Kim & Karrila 1991) for the motion of a particle in given velocity 
fields are used along with the moment expansion to construct the grand mobility tensor J//~. To 
simulate a medium of infinite extent, a unit cell containing a finite number of particles is periodically 
replicated throughout space. Interactions between all particles are summed, with Ewald's 
summation technique (Beenakker 1986) used to speed convergence. The grand mobility tensor is 
inverted to give a far-field approximation, 9t ~ = (dt'~) -j, of the grand resistance tensor ~t. It is 
in this inversion that many-body interactions are incorporated: while the construction of J t  ~ was 
performed pairwise, the inversion sums the series of reflected interactions among all particles. 
Near-field lubrication interactions, which are two-body interactions even in a concentrated 



1 l 0  J . F .  M O R R I S  and J. F. BRADY 

A A A A A A A A  

w W V W V W W W  

t ®o Oooo O H ...~< u > 

g x 
' q F  ' I V ' ~ V ' ~ "  ' I P " I P " ~ "  ' ~ "  

Figure 1. Schematic representation of the unit cell employed in the simulation of a pressure-driven channel 
flow of  non-neutrally buoyant  particles. The shaded wall particles are fixed while the unshaded interior 
particles are free to move in the x y  plane. Gravity acts in the negative y-direction. Only the particles 

of  one wall are within the unit cell: the second wall is included for appearance. 

suspension, are added to the grand resistance tensor in pairwise fashion, with the portion of the 
near-field interaction captured by the far-field approximation subtracted to avoid double-counting, 
thus yielding the grand resistance tensor :~. Note that ~ is a function only of the particle 
configuration. 

The hydrodynamic forces, torques, and stresslets on the N particles in the unit cell are related 
through ~ to the particle velocities and the average rate of strain by 

where 

[2] 

FRFU Rve 7 
= Lrs  rS J [31 

In [2], u is the 6N vector of particle velocities (translational and rotational); (u )  and ( e )  are the 
average velocity and the average rate of strain, respectively, of the bulk suspension; F is the vector 
of hydrodynamic forces and torques; and S is the N-particle stresslet exerted by the fluid on the 
particles. Couplings in [3] are indicated by subscripts: Rvu is the resistance tensor coupling 
force/torque to velocity/angular velocity, RSE couples stresslet to rate of strain, and the others are 
clear from these. 

Simulation of  pressure-driven flow requires simulating a boundary, which may be accomplished 
either through a numerical approximation of a wall as discretized flat patches (Durlofsky & Brady 
1989) or by allowing a group of the particles to mimic a wall by moving together at a fixed velocity. 
We use the latter method. This method, which NB have shown captures the essential physical 
features of the flow, is simpler because the hydrodynamic interaction between a "wall" particle and 
a suspended "interior" particle is no different from that between two suspended particles, whereas 
in the fiat-wall approach the interaction of  a sphere with the wall must be separately approximated. 
The N particles in the unit cell are divided into the Nw that make up the wall, and the remaining 
N~ = N -  Nw suspended particles. The unit cell is schematically illustrated (along with the wall 
particles of a neighboring image cell) in figure 1. Note that we simulate a monolayer in order to 
save computational expense. 

The wall particles are constrained to move at a prescribed velocity, while the interior particles 
move freely in the x- and y-directions (we simulate a monolayer in the (x, y) plane) in such a way 
that the net force (hydrodynamic plus nonhydrodynamic) on each is zero in accordance with 
inertialess flow. The forces on the wall particles and the velocities of the interior particles are to 
be determined. The overall strain rate ( e )  is zerot  and the average suspension velocity (u )  is 
prescribed. A pressure gradient is established to drive the flow, and this pressure gradient balances 
the force necessary to maintain the wall particle velocities, thus satisfying the requirement that the 
net force upon the unit cell vanishes. Buoyancy is incorporated by exerting a constant force F~ upon 

tThis  ( e )  is the cell-averaged rate of  strain required in the Stokesian Dynamics method. A local average of the rate of  
strain in the flow is nonzero in general, al though it does vanish at some plane in pressure-driven flow. 
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each interior particle. As discussed in section 2.2, pairwise interparticle forces are simulated, with 
the force on particle ct due to particle fl given by 

IP z exp[-- re] d~ 
F~ e = F0 1 ~ [Z-rE] a' [41 

where E = r/a - 2 is the dimensionless distance between the sphere surfaces, and d~ is the unit 
vector directed from sphere ~ to sphere ft. The parameter  r determines the range o f  the force, while 
the produc t  For fixes the strength. For  z = 1000 as used in the reported simulations, the force scaled 
by 6nr/a(u> is unity at a surface separation o f  about  5 x 10-Sa. 

Fixing the wall velocity at zero, the equat ion o f  mot ion  for the particles is 

() (:) () F '~ F R F u  R F U 1 .  ( <U> "~ (F~Vp'~ 0 
F i = = - I _ R ~  U Rii - i + + - FUd \U -- ( u > ]  ~F~ b] Fg 

[5] 

We have decomposed  Rvu, denot ing couplings by superscripts: R ww is the resistance tensor denot ing 
the interaction a m o n g  wall particles, R w~ denotes the interaction o f  wall with interior particles, and 
so forth. Solving [5] for the suspended particle velocities yields 

dx~ W <u> + (RFu) (Rvu <u>{-rlp + rg) [6] - -  ~___ ~ ii - 1. iw . i 
dt 

where x ~ is the Ni-particle position vector. Having constructed the resistance tensor, the positions 
are updated using [6] and the procedure is repeated. The near-field lubrication por t ion o f  the 
resistance tensor varies significantly for small relative mot ions  o f  the particles, and is updated at 
each step in the evolution, whereas the far-field approximat ion  obtained as the mobili ty invert ~ 
changes significantly only for relative motions  o f  neighboring particles on the order  o f  the particle 
size and is updated less frequently. 

The set o f  ordinary  differential equat ions [6] is completely coupled in the sense that  a particle's 
mot ion  depends upon  the position o f  all other  particles in the unit cell. Hydrodynamic  interactions 
are nonlinear in particle position, and thus, as pointed out  by NB, these equat ions exhibit 
deterministic chaos. 

3.2. Results 

We discuss nine simulations, with condit ions and selected results summarized in table 1. The 
simulations are labeled in co lumn 1. Input  parameters  are listed in columns 2-8: ~b~, H/a,  and B 
are given in columns 2--4, respectively; the number  o f  particles and the number  making up the wall 
in the unit cell are listed in columns 5 and 6, respectively; column 7 lists For, the interparticle force 
constant  and column 8 lists the dimensionless computa t ional  time step At (time is scaled by a/(u>). 
Taking For = 1.0 and 0.6 for H/a = 18.32 and 30.54, respectively, the repulsive force has the same 
magni tude  relative to the shear rate for all simulations, because (u> is fixed. The approximate  
dimensionless time t~s, required to achieve a steady fully-developed flow is given in co lumn 9. 
Columns  10 and 11 provide qualitative measures o f  the fully-developed flow behavior. In column 

Table 1. Summary of the simulations discussed. Columns 2-8 list input parameters, column 9 lists the approximate times 
to achieve fully-developed flow, and columns l0 and 11 provide qualitative measures of the fully-developed bulk flow. 
Simulations Gl and G2 differ only in the separation between the monolayers: in Gl the layers are adjacent, while in G2 

they are separated by four particle radii 

Simulation ~ H/a B N Nw For At tss ~ Qp 

A 0.4 30.54 0 79 9 0.6 0.05 12,000 0.49 1.20 
B 0.4 30.54 3.4 79 9 0.6 0.05 4000 0.46 1.17 
C 0.4 30.54 11.7 79 9 0.6 0.05 4000 0.40 1.14 
D 0.4 30.54 16.8 79 9 0.6 0.05 3500 0.35 0.97 
E 0.2 30.54 11.7 44 9 0.6 0.05 3200 0.21 0.62 
F 0.6 30.54 11.7 114 9 0.6 0.05 4000 0.45 1.07 
G1 0.4 18.32 3.4 51 9 1.0 0.05 1600 0.43 1.05 
G2 0.4 18.32 3.4 51 9 1.0 0.05 2000 0.45 1.02 
H 0.4 18.32 3.4 102 18 1.0 0.05 1800 0.46 1.14 
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10 is the average distance, scaled by H, of the suspended particles from the lower wall, denoted 
/~.  Column 11 lists the particle flux normalized by its value for a uniformly dispersed suspension 

1; 
Qp - $b <u ) 4)A(y)u(y) dy. [71 

We present profiles of ~bA, <u ), and T averaged over 500 dimensionless time units, with averaging 
begun after the flow is fully-developed based on the criterion that/7~ ceases to decrease. Lengths 
are scaled with a, velocities with (u ) ,  forces with 6n~la(u), suspension temperature with ((u)a/H) 2, 
and stresses with ~l(u)/H, where q is the fluid viscosity. 

3.2.1. Influence of particle buoyancy. We present in figure 2 the particle fraction, velocity, and 
suspension temperature profiles in the fully-developed flow for simulations at H/a = 30.54, 
~b~ = 0.4, and B = 0, 3.4, 11.7, and 16.8 (simulations A, B, C, and D in order of increasing B). 
The profiles for the neutrally-buoyant suspension in simulation A are essentially symmetric about 
the channel centerline, with large ~bA near the center of the channel caused by shear-induced particle 
migration. For B > 0, settling and migration compete in the lower half of the channel to yield a 
heavy-over-light stratification in simulations B, C, and D; adjacent to the upper wall, settling and 
migration both drive particles down leading to a clear fluid layer. On average, /~  decreases as B 
increases, indicating that particles lie progressively closer to the lower wall. Note, however that 
the maximum in ~bA is at y > 0.5 for simulations B, C, and D, while in the neutrally-buoyant case 
A, ~bA has a maximum at y = 0.5. The large values of ~bA near the centerline in simulation A are 
reduced at nonzero B. This is because SA is increased near the lower wall, and hence there is a 
stronger interaction between suspension and wall. This interaction of the suspension with the wall 
generates fluctuational motion which loosens the particle packing. Figure 2(c) shows that this 
reduction of ~bA near the center of the channel lessens the blunting of the velocity profile. 

For  B > 0, it is a general result that the maximum velocity occurs above the channel centerline, 
because the increase in ~bA at the bottom of the channel results in increased effective viscosity. 
Hence, 7 is reduced and the approach to the maximum from the lower wall of the channel is slower 
than from the upper. 

At nonzero B, there are no particles immediately adjacent to the upper wall and T, measured 
only over the particles, drops to zero here. Though there certainly remains fluctuational motion 
in the fluid, this is not sampled by our method. In the lower portion of the channel, the region 
where T exceeds unity widens, while the maximum T grows as gravity is increased. This may be 
attributed to the increase in both suspension-wall and particle-particle interaction as SA increases. 

3.2.2. Influence of particle fraction. We present in figure 3 profiles of $, u, and T in the 
fully-developed flow at B = 11.7 and H/a = 30.54 for ~b~ -- 0.2, 0.4, and 0.6 (simulations E, C, and 
F in order of increasing ~bbA). The flow behavior depends strongly upon ~bbA as shown by figure 3(a). 
The particles have sedimented into a sheared layer at ~b~ = 0.2 (simulation E) with shear rate, ~bA 
and Tall roughly constant within this layer. Surprisingly, ~bA for 0 ~< y < 0.2 is larger for simulation 
E than simulation C. Above y ~ 0.35, the particle fraction in simulation E drops rapidly to zero, 
while in simulation C it increases, indicating that at the value of B -- 11.7, shear-induced particle 
migration is important for ~bbA = 0.4, but has little influence for ~b~, --- 0.2. For both simulations C 
and F, the maximum in ~bA lies above the centerline, so that relatively dense material flows over 
light, and in both of these simulations, rapid shearing near the lower wall generates larger values 
of T than in simulation E. 

3.2.3. Influence of channel width. We present in figure 4 the results of simulations at q5 b --- 0.4 
and B = 3.4 for H/a -- 18.32 (simulation G1) and H/a =- 30.54 (simulation B). The flow behavior 
depends weakly upon H/a relative to the dependence upon q~b and B. To a good approximation 
for these and, presumably, larger values of H/a, the suspension may be treated as a continuum. 
The scaling of B with (H/a) 2 (cf. [1]) effectively reduces the influence of buoyancy, as evidenced 
by the similarity of the profiles from simulations B and G1 of qgA and u in figure 4(a) and (b). The 
profiles of T in figure 4(c) do, however, show evidence of the finite size of the particles, as smaller 
values of T at the center of the channel occur for the larger H/a. The region adjacent to the wall 
where T varies rapidly has a thickness that scales roughly as a/H, with T of simulation G1 reaching 
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a maximum relatively farther from the wall than in the wider channel. These observations are 
consistent with the findings of  NB for the influence of H/a for B = 0. 

3.2.4. Simulation parameters: monolayer separation and size of the unit cell. The influence of 
separation between monolayers and the size of  the simulational unit cell for fixed ~b~ and H/a were 
investigated. This work was motivated by the observation of NB that, with other parameters held 
constant, T was systematically larger for larger N. The unit cell is periodically replicated in all 
directions, so that if the cell is one particle diameter in thickness, particles essentially form cylinders 
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Figure 2. Profiles of the (a and b) particle area fraction 4)A, (c) particle velocity u, and (d) suspension 
temperature T, for q~b = 0.4, H/a = 30.54, and B = 0, 3.4, 11.7 and 16.8 (simulations A, B, C, and D, 

respectively). 

in the direction perpendicular to the plane of motion. This quasi-two-dimensionality was 
considered a potential source of  the anomalous dependence of T upon N. Increasing the width of 
the unit cell in this direction while maintaining the restriction of particle motion to the plane of 
the monolayer breaks this geometrical feature, yet we find the dependence of T upon N remains, 
and is still unexplained. Fully three-dimensional simulations of channel flows could determine 
whether constraining the motions of  particles to the plane of the monolayer is the cause of the 
dependence of T upon system size. 

A summary of the results of varying N and the monolayer spacing is presented in figure 5, which 
compares the results of simulations G 1, G2, and H. In simulation G2, the monolayers of  suspension 
were separated by a clear fluid layer of four particle radii, while in simulation G1, particles are 
directly adjacent to their nearest images in the z-direction. Simulation H has particles directly 
adjacent to their images in the z-direction, but there are 102 particles in the unit cell, rather than 
51 as in G1. (The unit cell of simulation H is twice the length in the flow direction but otherwise 
identical to the unit cell of simulation GI . )  The conditions for each simulation are B = 3.4, 
q5 b = 0.4, and H/a = 18.32. The only systematic difference in u and ~bA in these simulations is a 
slightly smaller u over the entire channel in simulation G2. In figure 5(c), we observe that T of 
simulation H is larger over the entire channel than in simulations G1 and G2, with the difference 
most pronounced near the peaks in T. Simulations G1 and G2 show no systematic difference in 
the value of the suspension temperature, and the dependence of T upon N is thus not explained 
by the monolayers lying directly adjacent to one another. 

The difference in the velocity profiles of simulations GI  and G2 is due simply to the fact that 
resistance to flow is less within the clear fluid than in the suspension layers. The clear fluid is lower 
in viscosity and, on average, farther from the fixed wall particles than the monolayers of suspension. 
Hence, at a given x and y, the velocity is larger in the clear fluid than in the suspension layers, 
yet the entire velocity field satisfies the prescribed (u ) .  

4. SUSPENSION FLOW M O D E L I N G  

The suspension-balance model outlined by NB was used to predict the fully-developed flow, with 
model predictions presented together with results of  simulations at the same conditions to facilitate 
evaluation of the success of  the model. We also present model predictions for conditions that were 
not simulated. 

4.1. Balance equations and constitutive laws 

Following the derivation in NB, we have the conservation of mass and momentum for the 
particle phase 
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Figure 3. Profiles of the (a) particle area fraction ~bA, (b) particle velocity u, and (c) suspension temperature 
T, for B = 11.7, H/a = 30.54, and CA b = 0.2, 0.4, and 0.6 (simulations E, C, and F, respectively). 
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Figure 4. Profiles of the (a) particle area fraction ~bA, (b) particle velocity u, and (c) the suspension 
temperature T, for ~b~ = 0.4, B = 3.4, H/a = 18.32 and H/a = 30.54 (simulations G1 and B, respectively). 

The parabolic velocity profile of a Newtonian fluid at the same volumetric flux is shown in (b). 
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Figure 5. Profiles of  the (a) particle area fraction q~A, (b) particle velocity u, and (c) suspension temperature 
T, for simulations at ~b~ = 0.4, B = 3.4, and H/a = 18.32. The simulations differ in the number  of particles 
in the unit cell N, and the separation between the suspension monolayers: monolayers in G1 (N = 51) 
and H (N = 102) are directly adjacent; monolayers in G2 (N = 51) are separated by a clear fluid layer 
of thickness four particle radii. The parabolic velocity profile of a Newtonian fluid at the same volumetric 

flux is shown in (b). 
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Oq~ 
o-7 + v . 4 ( u ) ~ = 0  [81 

Dp(u)p 
pp(O Dt  = (bG + ( r )p  + v.(l~)p, [9] 

respectively, where the material derivative in [9] follows the particles Dp/Dt  = O/Ot + (U)p-V, with 
(U)p the particle-phase average velocity; ( .)p denotes a particle-phase average. Also, in [9], (b)p, 
(F)p, and (12)p are the average body force, hydrodynamic force, and stress of the particle phase, 
respectively. 

The suspension-averaged velocity (u)  is needed, for example, in the expression for (F)p. This 
velocity is governed by the ensemble average of the mass and momentum conservation equations, 
taken over all points in the suspension. For incompressible materials, these equations are 

V. (u)  = 0 [1 O] 

and 

D ( p u )  _ (b)  + V.(lg), [11] 
Dt  

where the material derivative in this case, D / D t  = ~/Ot + (u).V, follows the suspension-averaged 
motion. We now discuss the various quantities in [8]-[11] and present the constitutive models used. 

We are interested in the case where the particle density differs from that of the fluid. In [9], 
(b)p = (pp - pdgqb: although the average body force on the particles per unit volume is ppgq~, only 
the differential body force is relevant to the particle dynamics, as a constant body force pfg at all 
points can be absorbed into a linearly varying pressure which is hydrostatically stable. 

The average hydrodynamic force per unit volume on the particle phase (F)p is given by the 
low-Reynolds-number expression in terms of the resistance tensor and the particle velocity relative 
to the suspension average 

(F)p = - n (RFu "(u - ( u ) ) ) p  

-- n(RFu)p'((u)p-- (u))  

-- 6nqanf (  ff))-~( ( u ) p  -- (u)),  [12] 

where n is the particle number density. In obtaining the second and third lines in [12], we have 
broken the average of (RFu'U)p and assumed that the average resistance tensor is isotropic. The 
hindered settling function, f(4~), is the ratio of the settling velocity of a particle in bulk 
sedimentation relative to the Stokes settling velocity of an isolated particle;f(qS) has been measured 
experimentally (see the review by Davis & Acrivos (1985)) and evaluated by Stokesian Dynamics 
simulation (Phillips et al. 1988). 

We can now see how migration arises in the context of this model. For vanishing Reynolds 
number, the LHS of [9] is zero, and if we consider the case of neutrally buoyant particles, [12] and 
[9] taken together indicate that the particle flux ~b(U)p appearing in [8] is given by 

2a: ( ~ V 4,<u)p = 4<u)  + W~ ) '<~)p, [13] 

where we have used 4) = (4n/3)  a3n. Motion relative to the suspension average is driven by stress 
gradients--that is, stress-induced migration. Furthermore, it is the normal stresses that are 
responsible for cross-stream migration. Considering flow in the x-direction with variations only 
in the y-direction, the cross-stream flux in [13] is driven by 

(V.X), = ~ -' . [141 

The conclusion is that non-Newtonian normal stresses are responsible for the migration. This is 
in marked contrast to the modeling of Leighton & Acrivos (1987b) and Phillips et al. (1992) in 
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which the suspension is assumed Newtonian and the particle migration is postulated to result from 
variation in shear stress (or shear rate). 

The particle contribution to the suspension stress (Brady 1993, NB) is given by 

( ~ ) p  ---- ( S ) p  -'[- ½ E'(LeXt)p-- (x 'bi)p - ½ pp ( r a  + ar)p -- pp(U'U')p. [15] 

In [15], (S)p is the hydrodynamic stresslet; -(x'b~)p is the stress due to nonhydrodynamic 
interparticle forces; - p p ( U ' U ' ) p  is the particle contribution to the inertial Reynolds stress; ½~. (L°X')p 
is the antisymmetric stress that results from the application of  an external torque (LeXt)p upon the 
particles, with ~ the unit alternating tensor; and the stress resulting from the moment about the 
particle centers (r -- x - x', with x ' the center of the ith particle) of the local acceleration is 
- ( pp /2 ) ( r a  + ar)p. The hydrodynamic stresslet (Batchelor 1970) is given for rigid particles by 

S i = ~  [ r a . n + a . n r ] d A ,  
i 

where n is the normal projecting out of the particle and Ai is the surface of particle i; note that, 
in general, S, is not traceless. The stresslet is a continuum mechanical concept, and is the only stress 
contribution without a direct counterpart in the expression for the stress in a molecular system for 
molecules of  finite size (Irving & Kirkwood 1950). 

No external torque is applied to the particles, and we consider low-Reynolds-number flows, so 
that both the acceleration and Reynolds stresses are negligible. Thus, the constitutive law for the 
particle stress for rectilinear flows takes the form 

(S)p = - Fl(~b)l + 2~/r/p(q~)(e), [16] 

in which rI is the particle contribution to the pressure, r/p = qs - 1 is the particle viscosity made 
dimensionless with the fluid viscosity, and ( e )  is the bulk rate of  strain. In general, normal stress 
differences must be included in [16] as discussed by NB and Brady and Morris (1997), but can be 
omitted here because normal stress differences play no role in the fully-developed flow in a straight 
channel; normal stress differences are important in curvilinear flows. 

It was shown by Jeffrey et al. (1993) that the hydrodynamic contribution to the particle pressure 
could be written as 

H = - ½ I : ( S ) p  = ( P ' ( u - ( u ) )  - Q : ( e ) ) p ,  [17] 

in which P~ and Q~ are the hydrodynamic resistance tensors relating particle velocity and the bulk 
rate of strain to the isotropic stress, respectively. 

On dimensional grounds, the particle pressure, or any stress, in a low-Reynolds-number flow 
should have the form 

H = ~17~((o, a/H),  [18] 

where 7 is a measure of  the local shear rate ~ = ~ and ~-(q~, a/H) is a nondimensional 
function of  volume fraction and a/H. At steady state the y-particle flux [13] is zero, and thus from 
[14] OZy,/Oy = t~I-I/Oy = 0. Hence, from [18] we see that if ~ varies, as in pressure-driven flow, then 
q~ must vary so as to keep the normal stress constant; where 7 is large, q~ is small and vice versa. 
Here we are assuming that ~(4~) is a monotonically increasing function of ~b and that a/H<< 1 so 
that it does not influence the behavior. 

In a homogeneous shear flow, a/H -- 0 and H = ~/y~(~b) gives a complete description of the 
stress. In an inhomogeneous flow, however, it may be necessary to take into account the variation 
of  II with a/H as in [18] even though a/H is small; that is, a nonlocal expression for the stress 
may be needed. For  example, a finite pressure can exist even in regions where the macroscopic shear 
rate is zero because the local fluctuational motion u' = u - (u )  can be nonzero, and from [17] 
nonzero fluctuational motion can generate a pressure. To capture this important feature and 
construct a simple nonlocal expression for the pressure, we model the pressure as dependent upon 
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the fluctuational motion, given by T = (u ' -u ' ) ,  akin to the treatment of granular flows and first 
suggested by Jenkins and McTigue (1990) for use in suspension mechanics 

H = ~/a ~p(4))x/T, [19] 

in which H is proportional to the square root of the suspension temperature (and hence linear in 
velocity) because it is a viscously-generated stress. Here p(4)) is a nondimensional function of solids 
concentration. 

As will be seen from the energy balance [25] discussed below, in a homogeneous flow T is directly 
proportional to (e>:(e>, and writing the pressure in terms of T or (e> (i.e. in terms of  7) is entirely 
equivalent. In an inhomogeneous flow, however, the fluctuational motion is not necessarily strictly 
proportional to (e>, and need not vanish when (e> vanishes. A pressure proportional to (e> will 
vanish at the velocity maximum in pressure-driven flow and lead to 4) = 4)m at this point regardless 
of the bulk particle fraction. This behavior is removed by writing pressure in terms of T, as the 
energy balance for T introduces a nonlocality for the stress as discussed below. 

The expression for the suspension stress is of the same form as [15] for the particle stress, with 
averaging now over the entire suspension. The constitutive law for the suspension stress is, again 
for rectilinear motion, thus 

( '£)  = - ( p > r I  + 2r/(e) + (I2)p 

= - ( F l  + ( p ) r ) l  + 2r/r/s(4))(e), [20] 

where ( p ) r  is the average pressure in the fluid and ~/s is the relative viscosity of the suspension. 
To determine the pressure in [19], we must determine T. An equation governing T is deduced 

from a consideration of the kinetic energy balance for the entire suspension. Taking the suspension 
average of the equation resulting from the scalar product of u with Cauchy's equation, and 
subtracting from this equation the scalar product of ( u )  with the average momentum equation 
for the suspension Ill]  yields (Batchelor 1970) 

D(p(u') 2) 
Dt - (b ' . u ' )  +(Y:>: (e )  - (d))  - V.(12'-u'>. [21] 

On the right-hand side of [21], (b ' . u ' )  and (12) : (e)  represent the rates of working by fluctuating 
interparticle and body forces and by the mean bulk stress, respectively; ( + )  is the average rate 
of viscous dissipation of mechanical energy into heat, and the final term is the divergence of the 
flux vector of  microscale fluctuational motion. 

Equation [21] is used to motivate the form of the equation governing T. The dissipation rate 
for a low-Reynolds-number suspension is given by (Brady & Bossis 1988) 

= ( u  - (u) '] .FRvu R F e ~ . ( u - ( u ) ' ]  
\ - (e>) Lr=  r= l \ - (e>) [22] 

The dissipation consists of a term (u"RFu'U'), due to fluctuational motion of the particles relative 
to the local mean motion, a term ( e ) : ( R s E ) : ( e )  due to the particles moving "affinely" with the 
average bulk motion and terms due to coupling of the fluctuational and bulk motions. The 
fluctuational dissipation is proportional to the suspension temperature 

(u ' .  Rvu" u ' )  ,-- 6~laf(4))-' T, [23] 

a fact that is used to model the dissipation as proportional to T, By introducing a Newtonian 
constitutive law for the stress, the flux vector appears in a form which suggests modeling by a 
Fourier law 

- (12'.u') ~ - ~/~b(Vu"u') ~ - ~/K(4))VT, [24] 

in which the "conductivity" coefficient ~c(4)) is proportional to the particle viscosity ~/p(4)). We 
discard the dissipation due to affine motion as this would be present in an ordered system and does 
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not generate fluctuational motion, and use the constitutive models expressed by [23] and [24] to 
pose the following equation for the particle fluctuational motion: 

D T  
c(0) -~-  = f l (0 ) (b"u ' )  + (~)p: (e)  - q~(O)a-2T - V . x ( O ) V T .  [25] 

Keeping the rate of working unchanged while discarding the affine dissipation requires introduction 
of phenomenological coefficients: c(0) is analogous to a heat capacity, ~(0) describes the 
magnitude of Tin homogeneous shear flow, and fl(0) together with ~(0) gives Tin a homogeneous 
sedimentation. The average particle stress (~)v appears on the right of [25] because the fluid 
dissipation is associated with the discarded affine motion. 

From [25] one can readily see that in a homogeneous shear flow, where V T  = O, T is directly 
proportional to (e) : (~)pOC(e) : (e) ;  thus, writing the pressure in terms of 7 or x/@ is entirely 
equivalent. In an inhomogeneous flow, however, V T :~ 0 and the flux of fluctuational energy will 
cause T to be nonzero even if ~ is zero. Further, if one assumes VT is small and expands for T 
from [25], H will be nonlocal in ~ and 0, with terms proportional to VT, V0, and higher-order 
gradients present. 

Closure of the governing equations requires specification 
a, fl, and K. For the suspension viscosity, we take 

of the 0-dependent functions ~/5, p, c, 

[26] 

which differs only through the exponent of - 2  (rather than -1.82)  from Krieger's (1972) 
correlation of experimental data, and the particle viscosity is given by t/p = qs - 1. The exponent 
- 2  is suggested by the theory of Brady and Morris (1997). The other 0-dependent functions, all 
recently defined by NB, can be determined from independent experiments or simulations. In fact, 
all except the "conductivity" coefficient x(0)  can be determined from experiments at homogeneous 
conditions. This work has yet to be performed, however, and the coefficients used here are modeled. 

The pressure function is recommended by NB as 

p(¢)  = 0'"2s/p(¢) [27] 

with the leading 0 ~/2 included so that as ¢ ~ 0, FI = O(02) (T is proportional to 0 as 0 ~ 0), in 
agreement with the analysis of Jeffrey et al. (1993). The factor of 0 '/2 was omitted here, taking 
P(0)  = 0,(0). 

The coefficients in the equation governing T are taken as 

k'r/P(0) and x(0)=k~-~/p(0), [28] ~(0) = 0 

where k, and k~ are constants. The coefficient c(0) is not needed here because we consider only 
fully-developed flow; fl(0) is also not needed because there is no average phase slip in the 
fully-developed flow. 

The model equations are made dimensionless by scaling lengths with H, velocities with 
(u)  --- IV(P)[/fi/t/ ,  and Twith (a /H)2 (u )  2. We define e = a/H.  For steady, fully-developed channel 
flow variations are only in the cross-stream y-direction, and the dimensionless particle momentum 
balances are 

and 

~ y (  d<ux)~ 9 
qp(O) dy ] = - 0  + ~ e - 2 0 f - ' ( 0 ) ( ( u x ) p -  (ux)) [29] 

d &  ~(0)v/T) Be, [301 

where the - 0 on the RHS of [29] is the scaled form of the particle-phase average of the constant 
pressure gradient, and B is the buoyancy parameter defined by [1]. An immediate simplification is 
obtained by assuming e2<< 1, an assumption consistent with describing the particulate phase as an 
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effective continuum. The particle x-momentum balance [29] is then <uy>~ = <ux> + O(d): in the 
fully-developed flow, there is negligible slip between the average particle and suspension average 
velocities. The equation governing the velocity is thus the x-momentum balance for the entire 
suspension 

d ( d(u~)~ - 1, [311 
dy qs(~) dy J =  

where the - 1 on the RHS is the scaled constant pressure gradient. At steady state, the equation 
governing T is 

d ( u )  2 ~:2 d (tc(q~) g )  = 0. [32] t/p(qS)(-~--y ) - - ~ ( ~ ) T +  ~yy 

Here and in the following, we omit the subscript x on the velocity. We carry out the differentiation 
in [30] to yield 

p, dq5 p dT -B4~ 
-d-yy + - -  - ' [33] 2T dy x//~ 

where p ' =  dp/dck. This equation is linear in T for B = 0, but nonlinear for B > 0. Particle 
buoyancy introduces a new type of nonlinearity to the model equations, with the other nonlinearity 
(in ~b) being due to the ~b-dependent coefficients. 

The boundary conditions should be derived in a manner analogous to the governing equations. 
This has not been done, however, and we simply model the boundary conditions in the simplest 
possible manner. We have no slip at both walls 

( u ) = 0  at y = 0  and y = l  [34] 

while the particle fraction must sum to the bulk value 

f ' qbA(y) dy = ~b~. [351 

The conditions on T prove to be more problematic. Simulations and a consideration of the 
hydrodynamic interactions of particles with the walls suggest that the boundary condition should 
be T ~ 0 at the walls. However, NB showed that with the present constitutive model of the stress 
this required ~b = q~m, the maximum packing fraction, at the wall to generate the finite particle 
pressure necessary to satisfy the y-momentum balance. Here, we apply an ad hoc condition intended 
to reflect in a simple fashion the hydrodynamic damping of fluctuational motion by the wall. The 
condition is 

e* \ dy ] at y = 0  and y =  1, [36] 

where the subscript w indicates the limiting value as the wall is approached from the suspension, 
and ~* is larger than ~(4)w) by an arbitrarily chosen factor of 20. In essence, the wall is represented 
as a region of particles near maximum packing, which allows T to be small but finite at the wall. 
This yields good agreement with simulation results. The coupled set of ordinary differential 
equations [30]-[32] are solved subject to the conditions [34]-[36] for q~, (u>, and T. 

To generate model predictions for comparison with the simulational results, the constitutive 
equations are modified for use in determining the area fraction ~A- AS shown by NB, the 
constitutive equations reported above are satisfactory for use in predicting area fraction if ~b and 
¢#m a r e  replaced by 4~A and ~)A,m where ~bA,m is the maximum random packing fraction of circles in 
a plane, determined by Kausch et al. (1971) to be qgA,m ~ 0.83. 

A finite-difference scheme is used to solve the second-order [31] and [32] for (u> and T, 
respectively. The y-momentum equation is a first-order equation for qgA, and the linearized 
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difference equation in the numerical solution is solved analytically using a summing factor (see 
Bender & Orszag 1978, p. 38) analogous to the integrating factor used for first-order linear 
differential equations. Simulations show that for sufficiently large B, there is a region without 
particles adjacent to the upper wall, a result which the continuum equations cannot predict. We 
set the particle fraction to zero if it falls below 10 -3, and find this ad hoc method entirely 
satisfactory. The solution is computed on a one-dimensional grid of 500 nodes. 

The set of equations is solved by a nested-iteration algorithm, which begins with the assumption 
of a particle fraction profile ~b~)(y) having the desired bulk fraction ~bbA. The x-momentum equation 
is solved using ~b~l(y) for the particle fraction to yield the velocity field u~°)(y). Employing u~°~(y) 
in the temperature equation, T~°~(y) is determined. The field T~°~(y) is then substituted into the 
linearized y-momentum equation, which is iterated with systematic increase or decrease of ~bA(0) 
until the average particle fraction is ~bbA with the field satisfying this condition denoted ~b~(y). This 
nested iteration completes the first overall iteration, and ~ ( y )  is used in the x-momentum 
equation to begin the second. The procedure is continued until convergence is achieved, with our 
convergence criterion being that the integrated absolute difference between two subsequent ~b~ ~ is 
less than one-half of one percent. 

4.2. Model predictions 
In figure 6, the predicted fully-developed flow for B = 3.4, ~b~ = 0.4, and H/a = 30.54 is 

presented together with the results of simulation B, at the same conditions. In order to show the 
agreement of the predictions with simulation data more clearly, we have omitted the small peak 
in ~bn from simulation which occurs because particles occasionally stick to the upper wall through 
lubrication forces. The model was fitted to the simulation results at these conditions using k, and 
k~ as fitting parameters, with the appropriate values found to be 

k, = 0.815 and k~ = 0.8, [37] 

noticeably different from the values of k, = 0.19 and k~ = 0.17 used by NB; the values given by 
[37] were used in all of the modeling reported here. Note that the suspension average velocity, and 
not the particle-phase average, is predicted by the model, and hence the difference in the velocities 
in the clear fluid layer above y ~ 0.82. 

In figure 7, model predictions are compared with simulation results for ~bbA = 0.6, H/a = 30.54, 
and B = 8.4. The bulk particle fraction has increased by 50% and B by a factor of roughly 2.5, 
but the values of k, and kK were unchanged. For an example of the change in conditions, note that 
r/s(~) increases by a factor of 3.5. Model predictions remain in good agreement with the simulation 
results. Although prediction of ~bA is less accurate than in the prior case, the qualitative features 
of the flow are captured correctly. In the qSA profile from simulation in figure 7(a), considerable 
ordering is seen at the channel center, which results from the interparticle repulsive force becoming 
large compared to the weak shear flow. This behavior cannot be predicted by the model. Because 
the model assumes smooth shearing of the suspension at all ~bA < ~bA.m, the sticking of particles to 
the walls observed in the simulation results is an understandable disparity between the predicted 
and observed u. Remarkably, however, the maximum in T is correctly predicted to lie above the 
channel centerline. 

A composite of the predicted fully-developed flow profiles for ~bbA = 0.4 and H/a = 30 over a 
range of B is shown in figure 8. Note the large difference between the predicted flows at B = 25 
and 25.5, and that the maximum in T undergoes nonmonotonic variation with respect to B: the 
maximum T increases until B ,~ 25 and then drops dramatically for larger values of B. Apparently, 
as ~bA at the lower wall increases with B, the reduction in shear rate is outstripped by the growth 
in intensity of particle interactions until B ,~ 25. Between B = 17 and 25, the upper surface of the 
suspended layer of particles is predicted to fall below the suspension velocity maximum, and for 
the larger values of B, the majority of the volumetric flux in the channel occurs in the clear fluid 
layer, with particles transported in a shear layer along the lower wall. 

The model does not accurately reflect the reduction in both the maximum particle fraction and 
degree of blunting as B is increased that was demonstrated by simulations A-D (see figure 2). 
Figure 8 illustrates that the model predicts only a slight reduction in the maximum ~bA in going 
from B = 3.4 to 17, and consequently predicts an almost indiscernible change in the u profiles. It 
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Figure 6. Model predictions and Stokesian Dynamics simulation results for the fully-developed flow of 
a suspension at ~b~ = 0.4, B = 3.4, and H/a = 30.54. Profiles of (a) the particle fraction ~A, (b) the velocity 
u (of the entire suspension in the case of the model, particles for the simulation), and (c) suspension 
temperature T are shown. The parabolic velocity profile of a Newtonian fluid at the same volumetric flux 

is shown in (b). 

is poss ib le  t ha t  this c o u l d  be r e m e d i e d  by an  increase  in the  va lue  o f  k,., b u t  this w o u l d  enta i l  a lso  
a c h a n g e  in the  va lue  o f  k~. 

Based  on  a g r e e m e n t  o f  m o d e l  p r e d i c t i o n s  wi th  s i m u l a t i o n  resul ts  at  c o n d i t i o n s  w e l l - r e m o v e d  
f r o m  those  at  wh ich  k~- a n d  k, were  d e t e r m i n e d ,  we c o n c l u d e  t h a t  the  m o d e l e d  coeff ic ients  a ccu ra t e ly  
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c a p t u r e  the  ~b d e p e n d e n c e .  Thus ,  we m a y  p red ic t  f lows fo r  wh ich  s i m u l a t i o n  a n d  e x p e r i m e n t a l  d a t a  

a re  lacking .  Th i s  is espec ia l ly  useful  fo r  c o n d i t i o n s  wh ich  w o u l d  be p r o h i b i t i v e l y  t i m e - c o n s u m i n g  

to  s imula te .  P r ed i c t i ons  fo r  the  c o n d i t i o n s  ~b~ = 0.6, H/a = 100, and  B = 5 are  p r e sen t ed  in f igure  9. 

T h e  pa r t i c l e  f r a c t i o n  is p r e d i c t e d  to be close to  ~bA,m in a wide  layer ,  wi th  c o n s e q u e n t  ex t r eme  
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Figure 7. Model predictions and Stokesian Dynamics simulation results for the fully-developed flow of 
a suspension at ~b b = 0.6, B = 8.4, and H/a = 30.54. Profiles of the (a) particle fraction ~b/A, (b) velocity 
u (of the entire suspension in the case of the model, particles for the simulation), and (c) suspension 
temperature T are shown. The parabolic velocity profile of a Newtonian fluid at the same volumetric flux 

is shown in (b). 
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Figure 8. Model predictions for the fully-developed flow of a suspension at ~b~, = 0.4, H/a = 30, and a 
range of B. Profiles of (a) particle fraction ~bA, (b) suspension velocity u, and (c) suspension temperature 

T are shown. 

b l u n t i n g  o f  t h e  v e l o c i t y  p r o f i l e  a n d  e s s e n t i a l l y  v a n i s h i n g  T. T h i s  l a y e r  is s u p p o r t e d  b y  a 
r a p i d l y - s h e a r e d  l a y e r  i n  w h i c h  4~A is m o r e  d i l u t e  a n d  T is l a r g e .  

T h e  m o d e l  e q u a t i o n s  c o n v e r g e  t o  l e g i t i m a t e  s o l u t i o n s  f o r  ~b~ > 0 .15 .  A t  s m a l l e r  p a r t i c l e  f r a c t i o n s ,  

t h e  m o d e l  a s  i m p l e m e n t e d  in  t h i s  s t u d y  t y p i c a l l y  f a i l e d  t o  c o n v e r g e .  O n e  p o s s i b l e  c a u s e  o f  t h i s  



BUOYANCY IN PRESSURE-DRIVEN FLOW 127 

fai lure is the omiss ion  o f  ~1/2 in the const i tu t ive  law p(q~) = ~b~/2r/p(~b) (see [27]). F u r t h e r  s tudy o f  
the func t iona l  forms ofp(q~),  ~(~b), and  x(~b) (in pa r t i cu la r  as ~b ~ 0) is needed in o rde r  to assess 
whether  the cause o f  difficulty is this omiss ion,  i na pp rop r i a t e  forms o f  o the r  coefficients o f  the 
mode l  for  small  ~b, or  the m e t h o d  o f  so lu t ion  o f  the govern ing  equat ions .  
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Figure 9. Model predictions for the fully-developed flow of a suspension at q~A b = 0.6, B = 5, and 
H/a = 100: (a) particle fraction q~A (b) the suspension velocity u, and (c) suspension temperature T. The 

parabolic velocity profile of a Newtonian fluid at the same volumetric flux is shown in (b). 
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5. SUMMARY AND CONCLUDING REMARKS 

Channel flow of a suspension of dense particles flowing in a monolayer was simulated by 
Stokesian Dynamics over a range of the bulk particle area fraction ~b b, dimensionless channel width 
H/a, and buoyancy parameter B = (U°/(u))(H/a) 2. The simulations provide basic information 
which is unavailable from present experimental results. Direct comparisons between simulation 
results and predictions of the flow by the suspension balance model have established the validity 
of the model under conditions where buoyancy is relevant. Buoyancy effects can be continuously 
varied, and a large range of behavior is exhibited. For intermediate to large values of B, the 
fully-developed flow is quite unlike that of a neutrally-buoyant suspension in pressure-driven flow. 
Good agreement between simulation and model predictions with flow behavior over a range of B 
and ~b b, with model parameters fitted at a single condition, indicates that the constitutive modeling 
proposed is capable of explaining the observed behavior. 

Pressure-driven flow of a suspension of dense particles results in the somewhat surprising 
phenomenon of a relatively heavy material flowing over light, first shown by Altobelli et al. (1991). 
Zhang and Acrivos (1994) have used the diffusive-flux phenomenology of Leighton and Acrivos 
(1987b) to predict this flow, finding good agreement with the experiments of Altobelli et al. for 
the fully-developed flow, including the noted stratification. They also find that the model predicts 
a mean secondary non-axial flow; it does not, however, appear that the diffusive-flux model could 
predict the density stratification seen in the channel flow simulations. A study of the diffusive-flux 
model for the flow shows it would require a cross-stream flux proportional to ~7~ to balance the 
gravity-driven flux where ~) -- 0; the mechanism which drives a flux toward the velocity maximum 
would now have to drive particles away from this point. While resuspension in tube flow is more 
complicated than in channel flow, owing to the secondary flow produced by the density 
stratification, channel flow actually provides the more stringent test of basic aspects of the flow 
model. Because the cross-stream particle flux balance in the fully-developed channel flow is 
one-dimensional, the excess weight of the dense suspension at the center of the channel must be 
supported by a stress variation directly related to the shear-induced migration. Thus the manner 
in which migration is incorporated into the model is isolated for scrutiny. 

The aphysical predictions (Phillips et al. 1992) of the diffusive-flux model result from its 
locality in 7. The suspension-balance model as employed in the present work achieves a 
nonlocality in 7 indirectly by assuming the particle pressure to depend on the suspension 
temperature as xfT.  An equation for T, whose form is deduced by physical arguments from the 
balance equation governing the microscopic kinetic energy in the suspension, includes diffusion of 
T, so that fluctuational motion is produced in regions of large "~,, with diffusive transport to regions 
of small or zero "). 

Simulations show that the flow behavior depends strongly upon both ~b b and B, but only weakly 
upon H/a. The weakness of the dependence on H/a is largely due to the fact that the influence 
of particle size has been included in B; consistent with the finding of NB for B = 0, the primary 
influence of H/a at nonzero B is upon the suspension temperature, as T is larger in the 
weakly-sheared regions for smaller H/a and varies rapidly near the walls in a layer whose thickness 
scales roughly as a/H. At fixed ~bband H/a, increasing B has the expected effect of driving particles 
toward the lower wall, but the maximum q~A often lies above the channel centerline. As a result, 
there is heavy suspension over light, and this occurs for a wide range of B for moderate 
concentrations. The strong dependence of the flow behavior on ~b b reflects the strong dependence 
of the viscosity upon particle fraction. 

Confidence in suspension-flow modeling in which T is a variable of central importance is 
increased by the success of the suspension-balance model in this study. We have tested the model 
over a range of conditions, and it should be noted also that a new type of nonlinearity in T is 
introduced by particle buoyancy (see [33]). The equation for T, unlike the others in the model, was 
deduced rather than derived, and its boundary conditions caused some difficulties in the original 
application. The success with which the model predicted the T field, including some unexpected 
behavior, indicates that the physical arguments used in deducing the equation are sound. The ad 
hoc boundary condition applied to T is also successful and, although unsatisfying because it retains 
considerable freedom in its specification, accurately reflects the hydrodynamic damping effect of 
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a solid boundary. With the work of NB and the present investigation establishing the validity of 
this model in a straight channel, it would be of interest to know its predictions for other geometries, 
including rheometric flows and flows in curved channels or pipes. 

In closing, we emphasize that the use of T is a modeling assumption to deal with the problems 
encountered when 7 = 0. The essential merit of the suspension balance approach is that it shows 
the direct coupling of the particle-phase mass and momentum equations, demonstrating how the 
particle flux is related to the variation of the bulk stress. This approach shows that for particle 
migration to occur the suspension must be non-Newtonian, because it is a normal stress variation, 
and not a shear stress variation, which drives the cross-stream particle flux. In the work of NB, 
it was shown that the diffusive-flux approach as essentially contained in the suspension-balance 
model, and Zhang and Acrivos (1994) assert that the two models are very similar. Indeed, the 
microstructural arguments involving irreversible interparticle interactions put forward by Leighton 
and Acrivos (1987b) to generate particle migration are precisely those necessary to generate normal 
stresses as shown by Brady and Morris (1997). However, in its rheological basis, which recognizes 
that suspensions exhibit shear-induced normal stresses and in showing that the particle flux results 
from the influence of these stresses, the suspension-balance approach has fundamental differences 
from the diffusive-flux modeling. 
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